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The surface growth of two kinds of particles (4 and C) depositing on a (1+ 1)-dimensional substrate
has been studied. For two different models, the randomlike deposition and the ballisticlike deposition,
the scaling behavior of the surface width W against the time ¢ is obtained for different values of the depo-
sition probability P of particle C. We found that the scaling behavior of the randomlike deposition mod-
el falls in the Edwards-Wilkinson class, while that of the ballisticlike deposition model belongs to the
Kardar-Parisi-Zhang class. We also found that the saturated surface widths have a nonmonotonic rela-
tionship dependent on the probability P for both models.

PACS number(s): 68.10.Jy, 61.50.Cj, 05.40.+j, 68.55.Bd

I. INTRODUCTION

Recently, there has been considerable interest in the
study of the morphology of growing surfaces or inter-
faces, not only because of its potential technological im-
portance, but also due to its manifestation of interesting
nonequilibrium statistical physics at fundamental levels
[1]. Most of these studies contain rough surfaces and sto-
chastically growing interfaces in the context of ballistic
deposition [2], the Eden model [3,4], and the solid on
solid model [5,6], as well as the molecular-beam deposi-
tion [7,8] and the continuum stochastic equation of Kar-
dar, Parisi, and Zhang (KPZ) [9].

The diffusion-limited aggregation model produces a
self-similar fractal structure [10]. The Eden model and
the ballistic deposition model as well as some other sur-
face growing models give rough surfaces that are self-
affine but not self-similar. Various growing models that
have been studied for such surface phenomena only con-
cern the growing of one kind of particle [1]. However, in
the growing of real materials one may take into con-
sideration that different kinds of particles are deposited
on these structures such as alloys and impurities in ma-
terials. Thus, in the growing system, there may exist
different interactions for different particles. The growing
mechanism may also be changed.

In this work we report on results of two surface growth
models, namely, the randomlike deposition (RLD) and
the ballisticlike deposition (BLD), which are more com-
plicated than that which we have studied in Ref. [11].
We describe the kinetic growth of the deposition of two
kinds of particles 4 and C (particle 4 with probability
1—P and particle C with probability P) on a d-
dimensional substrate, using the above models. The
dynamical scaling behavior is characterized by the scal-
ing of surface width with respect to the time ¢ and the
system size L for various probability P of particle C. The
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saturated surface width varying with the probability P is
considered, and the morphologic structures for various
values of P are also discussed. The arrangement of this
paper is as follows. In Sec. II, we present the models and
the physical motivations. In Sec. III, the dynamical scal-
ing behavior of the surface width is studied. Summariz-
ing remarks and conclusions are given in Sec. IV.

II. RANDOMLIKE AND BALLISTICLIKE
DEPOSITION MODELS

Two different kinds of particles, particle A (the active
particle) with a probability 1—P, and particle C (the
nonactive particle) with a probability P, are deposited on
a (14 1)-dimensional substrate. The particles are allowed
to fall straight down randomly, one at a time, onto a
growing surface and stick where they land or diffuse to
another position according to the models described
below. In both models, first a site is chosen randomly,
and then with probability 1—P (or P) a particle 4 (or
particle C) is deposited on the surface of the aggregation
depending on the following conditions.

Randomlike deposition model (RLD model): First, the
deposition occurs when the particle on the top of the
chosen site is particle 4, or if the particle on the top of
the chosen site is particle C and one of the nearest neigh-
bors (one unit higher than the top of the chosen site) is
particle A. Second, after this deposition, if the deposited
particle is particle C, it is allowed to diffuse to its neigh-
bors until it is located at a minimal height. However,
there is no such diffusion for particle 4.

Ballisticlike deposition model (BLD model): The depo-
sition occurs once the dropping particle first encounters a
particle 4 wherever it is on the top or in one of the two
neighbor columns of the chosen site. For instance, if the
dropping particle falls down along column i, and it first
meets a particle 4 which is in the column i +1 (no matter
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whether this particle 4 is covered by a particle C or not),
this dropping particle will stick to this particle 4 and the
falling stops. Obviously, if the dropping particle first
meets a particle 4 which is just on the top of column i, it
stops and deposits there. The rules are depicted in Fig. 1
for both models.

For the randomlike deposition model, the effect of the
diffusion for particle C is that particle C is always depos-
ited at a local minimal height. Such kind of diffusion has
been used in many deposition models and it mimics the
actual process of the growing of the film or some other
growth models (see Ref. [1] and references therein). Ob-
viously, for P=0, the deposition process of the random-
like deposition model is just the same as the random
model [12], which is a trivial surface growth model in
which a particle simply falls until it reaches the top of a
column. Since there are no correlations between the
columns, these grow independently; however, the surface
is rough. When P70 once a particle C is deposited on a
column, its growth will strongly depend on the local
structure. This introduces a correlation between the
different columns. For the ballisticlike deposition model,
the deposition happens not only on the top of a column,
but also beside a column. When the falling particle first
meets a particle C on a neighboring column, it can fall
continuously until it meets a particle A if it has not
reached the top of the on-site column. This process
might be considered as a kind of diffusion. When P =0,
our ballisticlike deposition model is reduced to the usual
ballistic model with only one kind of particle involved,
and it has been studied extensively [2]. When P70, the
deposition process is more interesting and will be affected
by the existence of particle C.

The physical motivations of our two models might be
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FIG. 1. Two deposition models: (a) The randomlike deposi-
tion model; (b) the ballisticlike deposition model. The circles
represent the falling particles (particle 4 or particle C), the
squares represent particle A4’s, and the squares with a cross
denote particle Cs. The down arrows show the falling and the
right and left arrows show the positions where the falling parti-
cle will stick.

6309

threefold. First, they may represent the chemical reac-
tions which take place in the growing surface of materi-
als. For example, we model the following reaction pro-
cess: A +B=C. Particle A and particle B are active, and
once particle A is touched by a particle B the combina-
tion produces a reactant C, which is no longer active.
The particle A is chosen with a probability 1 — P, and the
particle B with P. That is, the reactant C is produced
with the probability P when P is small. Thus, in these
systems, some of the surface sites continue to react while
some sites do not. We introduce naturally the diffusion
only for particle Cs since they have less interacting
“bonds” with other particles and they can move more
freely to a place with lower height, just like most of the
diffusion processes studied by other authors (see Ref. [1]
and references therein). The initial flat substrate placed
with particle A is for the reactions. Second, these models
can also represent a growing interface of a material with
low concentration of impurities. Our models mimic the
role of the impurity atoms as follows. An impurity atom
(particle C) is introduced with a probability P while it has
less active bonds for other atoms (particle 4). Third, our
models may describe the deposition of one kind of heavy
particle and another kind of light particle. The heavy
and light particles are supposed to have different attrac-
tive forces between themselves and each other. Thus, the
light particles may diffuse more easily than the heavy
ones.

III. DYNAMICAL SCALING BEHAVIOR
AND DISCUSSION

Now let us report on the results of a (1+1)-
dimensional case. The substrate is a strip with the width
L from L =60 to 1100 in the X direction. The aggrega-
tion is in the Y direction. At the beginning, all sites are
occupied by particle 4 for Y =0. A periodic boundary
condition is used in the L direction (in the X direction).
The dynamical scaling behavior is characterized by scal-
ing the surface width

WXL,t)=S L' h(r,t) =k (D], M

r
where & (r,t) is the height of the surface at position » and
time, ¢,4 (¢) is the average height at time ¢, and d’=d —1
is the substrate dimension in d-dimensional space.

Figure 2 shows a plot of the surface width W as a func-
tion of time (the numbers of the deposited particles) for
different deposition probabilities of particle C for the ran-
domlike deposition model. Statistic average is found by
averaging over 100—1000 runs. Curve (a) shows the case
of the random deposition of only one kind of particles
(particle A4), i.e., with P=0 for particle C. As there are
no correlations between the columns, the height of the
columns follows a Poisson distribution, and the width of
the surface is proportional to the square root of time ¢,
W~tB ie., =1, independent of the dimension [12]. At
the same time, there is no saturated width, that is, no
steady state. While P+0, the scaling behavior is
changed. From curves (b)—(e) shown in Fig. 2 for
different deposition probabilities of the particle C, we see
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FIG. 2. log,W (t) versus log,t for the randomlike deposition
model with all the parameters shown in the figure. The slope of
the dashed line (in the inset) gives 8=0.25+0.01.

that the growth of the aggregation is divided into three
stages. First, at the early time (for log,t <5), the width
grows with a power of time W ~¢ 172" the same as the ran-
dom deposition process. Second, the width grows with a
power of time W ~t? with B~0.25. Finally, there
is a saturated value of the width. The exponent S is
calculated for each probability P by using the linear
parts of the log,W —log,t plots of various values of
L (60=<L =<1100). The inset of Fig. 2 shows one exam-
ple for the probability P=0.25, and the slope of the
dashed line gives the value of B. We believe that the
finite-size effects are minimal since the linear parts are
over several decades of time. In Fig. 3 we have plotted
the values of saturated width W (¢t= oo ) against the sys-
tem size L. The exponent a in the scaling
W (t= o )~L%*is found to be a ~0.44, which means that
our randomlike deposition model belongs to the
Edwards-Wilkinson (EW) class [13,14], although, on one
hand, there is a big deviation from the EW prediction for
the exponent @=0.5. On the other hand, for our ran-
domlike deposition model, the growth dynamics is basi-
cally linear, since most of the growth processes of
columns are independent of its local geometry. The
growing mainly depends on whether the chosen position
is crowned by an A- or C-type particle. Moreover, the
correlations in the distribution of the particles by
geometry might conceivably introduce a weak nonlineari-
ty, but it should be very small. Therefore, the width
shown grow as the 1 power of time, i.e., 8~0.25, as
indeed it does in the simulation. Thus, together with the
exponent a==0.44 obtained from our simulation which is
close to %, we conclude that our model belongs to the EW
class. Actually, as we have seen in our simulation, for
large probability P (P >0.25), the exponents 3 and a be-
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FIG. 3. Log-log plots of the saturated surface width

W (t = o0 ) against the system size L.

come slightly bigger than that of the small probability P.
As we will discuss below, for small P the diffusion is lim-
ited, while for large P the diffusion introduces a weak
nonlinear diffusive term into the Edwards-Wilkinson
kinetic equation [13]. As a result, the weak nonlinearity
enables the exponents a and S to be different from the ex-
act values of a=0.5 and 8=0.25 of the EW theory. This
might be the reason why the value of a deviates from 0.5
more and more as the probability P increases in our case,
and especially for P=0.3 the points do not fall on the
scaling line very well (see Fig. 3). However, we can still
expect that our randomlike deposition model is
Edwards-Wilkinson-like.

In addition, an interesting result is that the saturated
width varying with the probability P shows a nonmono-
tonic relationship (cf. Fig. 4), that is, W (t= o) first de-
creasing and then increasing as the probability P in-
creases. The value of the probability of the minimal
point is around 0.25, i.e., P,, =0.25. Furthermore, in or-
der to verify the above, we have also counted the concen-
tration N, of particle C on the surface. We found that N,
has a linear relationship varying with the probability P
but with different slopes before and after the minimum.
However, the change of the slopes is not too big, which
enables us hardly to pronounce that there exists a phase
transition, but rather we conclude that there is only a
change of the morphologic structures (see following dis-
cussion). Finally, in order to make sure that our results
are not due to the finite-size effects, we have carried out
several simulations on system size L for L =100, 400, and
1100. All of the results indicate the same behavior.

Now we answer the question of why the diffusion is
limited or weak during the surface growing, and explain
how the morphologic structures change as the probability
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FIG. 4. Plot of log, W (t= ) versus the probability P of par-
ticle C for the randomlike deposition model.

P increases. For small P (P <P, =0.25), the depositions
of particle 4 occur more frequently and these depositions
form many barriers. As a result, the surface becomes lo-
cally rougher. This rough surface limits the diffusion of
particle C, and diffusion happens only within a small
range. However, for large P, particle C diffuses more
easily and may travel a large distance, which makes the
surface smooth. Thus, morphologically, in the region
P < P,, the surface appears rough down to short length
scales. For P=P,, the surface is smoother than that of
P <P, and when P > P, , the surface is dominated main-
ly by relatively large terraces. We have shown two exam-
ples with respect to these two cases of P>P,, and P <P,
in Fig. 5. We see that indeed the surface structure is
rougher for P=0.15 than for P=0.35 In our recent
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simulation for higher dimension, we have found also a
similar change of the morphologic structures.

We now turn to the ballisticlike deposition model. Fig-
ure 6 shows the plots of the surface width as a function of
time for various values of probability P. For each curve
the statistical average is obtained over 400 runs. It can
be seen that there are also three different regions in the
plot just like the situation for the randomlike deposition
model: at the early time (log,? <3) of the deposition the
surface width can be scaled as W ~¢1/2, while W ~t” for
the intermediate time. Then follows a saturation. For
P =0, the result is exactly like the case of standard ballis-
tic deposition with only one kind of particle (particle 4),
which gives B=1 and a=] (without any finite-size
effects) [15]. When P50, the value of B is calculated by
using the same method for the randomlike deposition
model, and is found to be 0.30, i.e., 8~0.30, as shown by
the slope of the dashed line plotted in the inset of Fig. 6.
From the logarithmic plot of W (t= ) versus system
size L, a scaling W(t= o0 )~L* with a~0.46 is obtained
(see Fig. 7). The exponents a and 3 satisfy the scaling
law a+Z =2 with Z=a/B. Therefore, our ballisticlike
deposition model falls in the KPZ universality class [9],
which implies that this model can be well described by
the KPZ equation

oh _ _» A(P)

ot V°h + 5
but with the diffusion term related to the probability P.
In Fig. 8, we have plotted the saturation width
W (t= o) versus the probability P. One can see that
there is also a minimum: The minimal point is also about
P, =0.25. As the same reason argued for the random-
like deposition model, this nonmonotonic relationship re-
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FIG. 5. Surface structure in the steady state of the random-
like deposition model for the system size L =100: curve (a) for
P=0.15 and curve (b) for P=0.35. Only the region close to the
surface is shown.
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FIG. 7. Log-log plots of the saturated surface width

W (t= ) against the system size L for the ballisticlike deposi-
tion model.

sults from the diffusion process when the surface grows.
The nonactive particles tend to aggregate together, and
the morphologic structures are different when the deposi-
tion probability P is below or above P,, =0.25. From a
figure (not shown here) similar to Fig. 5, we have seen
that the surface is rough (or smooth) for small (or large)
P, respectively. However, a complete understanding of
the kinetic behavior is difficult. Physically, our ballistic-
like deposition model is somewhat close to a model inves-
tigated by Pelligrini and Jullien [16]. We considered the
active and nonactive particles in our model just like their
mixture of sticky and sliding particles. Their model is
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FIG. 8. Plot of log, W (t = ) versus the probability P of par-
ticle C for the ballisticlike deposition model.
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also ballisticlike, and they have shown that there is a
roughening transition in high dimensions (d =3 and 4).
For our present results on the (1+ 1)-dimensional case, as
the probability P only varies within a small range, it is
hard to make a conclusion of the existence of phase tran-
sition. Moreover, the dimension of d =2 is a critical di-
mension and the situation is always very complex. To
check whether there is a phase transition in our model or
not, much more numerical work is needed for higher di-
mensional case. In a recent work, we have seen that
there is an evidence for the phase transition in d =3 di-
mensional case [17], and the work is in progress.

It is worth noting that in Fig. 8, we have included the
values of the saturated widths for P=0. As we can see
that these saturated widths are log, W (= o0 )=3.35 and
4.30 for L =100 and 400, respectively. They are just on
the lines shown in Fig. 8. This strongly supports the
monotonic decreasing of the saturated width with respect
to the probability. Finally, from our results we have also
found that the deposition will be stopped when the depo-
sition probability P = 0.35 since the surface sites are all
covered by nonactive particle C’s. That is, disappearance
of bonding sites may take place when the probability P
becomes too large.

IV. REMARKS AND CONCLUSION

We would like to make a few relevant remarks on our
results of both models. (1) In our study, the exponent 3 is
defined by the slope of the linear parts in the log-log plot
of the surface width versus the time for different system
sizes. This reduces the finite-size effects and gives reliable
results, although our system is not too big. (2) From the
plot of P=0.45 for the randomlike deposition model (cf.
Fig. 2) and P=0.30 for the ballisticlike deposition model
(cf. Fig. 6), we have seen that there is a rapid increasing
of the surface width and the system reaches the saturated
state quickly. Physically, this rapid increasing is due to
the forming of clusters of nonactive particle C. (3) For
both models, we have observed a nonmonotonic relation-
ship of the saturated width varying with the probability
P. From the counting of the concentration N, of particle
C on the surface, we found that the variation of the rela-
tionship of N, versus P is small before and after the
minimal points, P, , for both models. In order to verify
that the increase of the saturated width above P,, is not
due to the finite-size effects, we also did several runs for a
larger system size L =3000. Our results show that at
least there is an increase of W (¢ = o) for the probability
P above P,,. Comparing the present work with our pre-
vious one in Ref. [11], where we studied the same models
but without considering the diffusion and found that
there is no such minimum, the diffusion bears the respon-
sibility for the nonmonotonic behavior: The nonactive
particles C tend to aggregate together. Thus the morpho-
logic structures are different for large and small probabil-
ity P’s since the diffusive processes of particles C are
different from each other in these two regimes. The
change of the morphologic structures for both models is
somewhat like that found by Amar and Family in a re-
stricted solid on solid surface growth [18], and it appears
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to be the nonequilibrium analog of the roughening transi-
tion. However, for our case, it is difficult to conclude
whether there is a phase transition or not. This deserves
to be studied in further work. (4) For our randomlike
deposition model, we have implemented a physically real-
istic process for particle C to diffuse. Immediately after
the deposition, the particle C moves via random walk
along the surface. It stops when it reaches either a local
minimum or when it has moved /; steps on the surface.
That is, there is a diffusion length for particle C. In the
present work, this length /_; is limited to be 20 lattice
spaces I ; =20, which is rather large and may incorporate
to the experimental situation with a high temperature.
For small probability P, almost all the diffusion stops
within /; since the morphologic structure is locally
rough, while for large probability P the diffusion steps are
big and may reach the value of / ;. Recently, we have
done some runs for different values of /4, i.e., different
limitations for the range of diffusion; we found that the
early-time scaling has some differences, but the asymptot-
ic statistical scaling properties of the surface are basically
the same. A more detailed study is in progress and will
be presented elsewhere. Nevertheless, for the ballisticlike
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deposition model, the diffusion is not limited before the
particle C sticks to a particle 4.

In conclusion, we have proposed a surface kinetics of
two kinds of particles (4 and C) deposition on a (1+1)-
dimensional substrate. The scaling behavior of the sur-
face width W is obtained for different values of the depo-
sition probability P of particle C and system sizes, for two
models, the randomlike and ballisticlike deposition mod-
el, respectively. We found that the scaling behavior of
the randomlike deposition model falls in the Edwards-
Wilkinson class, while that of the ballisticlike deposition
model belongs to the KPZs class. We also found that
there is a nonmonotonic relationship of the saturation
surface widths dependent on the probability P for both
models.
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